

G. Ambrosio, N. Andreev, E. Barzi, P. Bauer, K. Ewald, S-W Kim, P. Limon, I. Novitski, J. Ozelis, G. Sabbi, A. Zlobin *Fermilab*

D. Dietderich, S. Gourlay, R. Scanlan LBNL

A. Ghosh, W. Sampson BNL

A. Ijspeert *CERN*

Outline:

- Main features,
- Mechanical design,
- Conductor development,
- Practice coils,
- Plans.

VLHC Magnet Workshop May 24-26, 2000

Hybrid Common Coil

-Field: Bmax=11 T @ 4.3 K

-Current: 15.4 kA

-Good field region: $\Delta B/B < 10^{-4}$ @ $\phi < 1$ cm

-Design: two-layer block type

two-bore common coil

-Hybrid: NbSn - NbTi

-Horizontal bore gap: 30 mm

-Coil cross-section per bore 11+16 cm²

-Strand: Nb_3Sn , ϕ 0.7 mm,

 $Jc = 2kA/mm^2 - 10\%$ @ 12T, 4.2K

-Cable: N=40, 1.18*15.0 mm² (rect.)

-Insulation: E-glass tape and Kapton

-React & Wind technique for NbSn

-Fermilab/LBNL/BNL collaboration

Hybrid Common Coil

- Hybrid design:
- Cost saving magne ==> reduce the use of Nb3Sn,
- React and wind:
 - ==> use E glass tape (cheaper and thinner than S2 glass),
 - ==> use materials and assembling procedures to reduce costs,
- No auxiliary coils:
 - ==> simple assembling and mechanical design.

Total magnetic force on 1 quadrant of an aperture @ 11 T

	In.	Out.
Fx (MN/m)	2.2	0.6
Fy (MN/m)	0.4	0.4

Magnetic forces @ 11 T

"Hard bent outer coil" improve mech. stability against forces from the inner coil

Mechanical analysis of the coil-package

ANSYS 5.5.18P

FE-simulation of optimized coilpackage at operating conditions. See outer coil protection scheme at work.

Conclusion:

- outer coil protection scheme: interlayer sheet (steel, > 3 mm), outer coil spacers (Cu, > 3 mm)
- measures to prevent coil bending: coils of equal height,
- vertical pre-stress, mainly in the outer coil (~ 50 MPa)
- horizontal pre-stress, mainly in the upper part of the inner coil (~ 60 MPa)
- rigid yoke

infinitely rigid coil **boundaries**

Coils under magnetic forces (stress in Kg/mm²)

	Maximum Equivalent Stress (MPa)					
	after welding	4.2 K	Max field			
Inner coil	43	120	72			
Outer coil	60	50	78			

Seqv, MPa	11 tesla
Spacer lamination	145
C-Yoke/Yoke	180/157
island	100/13/
skin	335

AMEYS 5.5.1sp
MAY 23 2000
13:19:02
NCOAL SOLUTION
STEP=1
SUB -1
TIME=3
SK (AVG)
RSYS -0
PewerGraphics
BFACBT-1
APPES-Mat
DPK -676276
SPN =-12.491
SPN =-12.491
-9.212
-5.933
-2.655
.624151
3.903
7.182
10.46
13.739
17.018

Horizontal stress in the yoke at 11 T (Kg/mm²)

Max tensile stress in iron yoke is 170 MPa. Rounded shape and further optimization should reduce it lower than 140 MPa.

Connection schemes

Alternative mechanical designs under development:

- Yoke with vertical gaps
 - + modular coils,
 - + simple assembling,
 - requires thick skin,
 - coil motion?
- Scissors laminations with wedges to compensate thermal contraction
 - + modular coils,
 - tensile stress in the iron.

Conductor development

GOALS:

- Optimization of cable design, cabling and reaction procedure
 - ITER wires, different cable designs
- Choice of conductor (ITD, MJR, PIT)
 - short sample bending degradation tests.

Cable	Wire diam.	Subel.	No. of	Width	Thickness*	Cable degr. @ 12 T
	mm		strands	mm	mm	w-w/o core
A	0.5	-	57	15.0	0.85	5% -
В	0.7	-	41	15.0	1.22	7%-7%
C	0.3	6+1	36	15.0	1.51	

^{*} Does not include stainless steel foil (0.025 or 0.013 mm thick)

Detail of cable broad face open to show the core

Strand: $\phi = 0.3 \text{ mm}$

Subelement: 6*1

Cable: 36 subelem.

15 x 1.5 mm

Core: 0.013 mm

Conductor tests

Cables:

- Samples reacted straight and bent,
- Sample holder can be used both at BNL and at NHMFL,
- first measurement: June 00

Strands:

- Ic degradation of wires measured using Fermilab ss-test facility,

Cable sample holder assembling

G. Ambrosio - VLHC Magnet Workshop

Practice coils

- Practice coils will be produced in order to develop all assembling procedures:
 - cable reaction,
 - insulation,
 - winding,
 - splices,
 - impregnation,
- Conductor: different cables using ITER strands,
- Production of first practice coil should start in July.

Coil test facility ??

- Simple mechanical structure to test 2 NbSn coils:
- 10 mm gap,
- 23 kA,
- 7.5 T

Status and plans

- First conceptual design is ready and alternative designs are under study.
- React-and-wind technology R&D is underway
- Goals for this year:
 - I finalize mechanical design
 - select cable
 - fabricate test coils (start mid-June)
 - assemble a mechanical model (winter 00-01)
- Fabrication of the first short model is expected to start during spring 2001,
- Goal: test the first model in summer 2001.